PBPK Modeling of Ethylene Glycol and It's Metabolite, Glycolic Acid

Richard A. Corley, Ph.D.

Toxicology Forum July 10-14, 2000 Aspen, CO

Battelle

U.S. Department of Energy Pacific Northwest National Laboratory

Outline

- Driving forces for PBPK model development
- Metabolism and mode of action
- Model structure
- ADME parameter estimation
- Simulations of available in vivo data
- Ongoing research
- Conclusions to date

Battelle

Driving Forces for PBPK Model Development

- Metabolite (GA) is proximate developmental toxicant
 - non-linear metabolism
 - dose-rate/dose-route critical determinants
 - significant species differences
- Facilitate extrapolations
 - · high-to-low dose
 - route-to-route
 - species-to-species
- Exposure assessment guidelines (e.g. RfC/RfD) encourage use of validated PBPK models

Battelle

Metabolism and Kinetics Key for Toxicity

- Bioavailability
 - well-absorbed orally
 - poorly absorbed dermally
 - low vapor pressure limits vapor exposures
- Non-linear metabolism of glycolic acid
 - low doses (20-200 mg/kg)
 - GA minor (<5% of dose)
 - CO₂ major (30-40% of dose)
 - high doses (200 2000 mg/kg)
 - GA major (20-50% of dose)
 - CO₂ reduced (<25% of dose)

Battelle

Metabolism and Kinetics Key for Toxicity

- Oxalic acid accounts for <2% of dose
- Other metabolites have very short t_{1/2}'s and are difficult to detect
- Several metabolites are also:
 - dietary constituents
 - water DBP's
 - products of endogenous biosynthesis

Battelle

Parameter Estimation - ADME

- EG Blood:Air Partition coefficients
 - vial equilibration (rat & human λ~17,500)
- First-order absorption for EG and GA
 - oral gavage, IP injection, SC injection
- IV injection direct input into venous blood
- Dermal absorption of EG (format of Jepson & McDougal, 1997)
- Inhalation of EG (format of Andersen et al., 1987)

Battelle

U.S. Department of Energy Pacific Northwest National Laboratory

Parameter Estimation - ADME

- Partition coefficients
 - EG and GA tissue:saline by ultrafiltration (λ ~unity)
 - GA in EEF & Embryos by ultrafiltration (in progress)
- Plasma protein binding
 - No evidence for GA protein binding in either rat or human plasma by ultrafiltration
 - Positive controls (phenol) consistent with published data

Battelle

Parameter Estimation - ADME

- FG metabolism
 - In vitro rat/rabbit/human liver slice studies for EG
 - rate constants resulted in underprediction of in vivo metabolism
 - First-order EG metabolism estimated from *in vivo*, female SD rat data (Pottenger et al., 1998)
 - Additional human/rat S9 comparisons (in progress)
- GA metabolism
 - In vitro rat/rabbit/human liver slice studies for GA
- Reduced metabolism of GA in vivo at >3 g/kg dose
 - Competitive inhibition of GA metabolism by EG incorporated

Battelle

U.S. Department of Energy Pacific Northwest National Laboratory

Parameter Estimation - ADME

- Renal clearance estimated from in vivo studies
 - First-order clearance of EG from arterial blood
 - Female SD rats (Pottenger et al., 1998)
 - Higher clearance of GA in urine at doses >500 mg/kg
 - NOT associated with saturated protein binding
 - Non-linear clearance described by kidney model including
 - glomerular filtration
 - saturable reabsorption
 - Male Wistar rats (Richardson, 1973; Harris & Richardson, 1980)
 - Female SD rats (Pottenger et al., 1998)

Battelle

Simulations of Available Data U.S. Department of Energy Pacific Northwest National Laboratory

Ongoing Research

- Extend the model to the developing rat embryo
 - partition coefficients for GA in EEF and embryos
 - dose-rate kinetics of EG in pregnant SD rats (gd11)
 - constant infusion vs. oral gavage
- Extend the model to the human
 - additional rat/human S9 in vitro metabolism of EG
 - utilize existing human liver slice data with GA
 - human inhalation kinetic study (Filser)
 - maternal blood GA (Cmax, AUC) internal dose surrogate for developmental toxicity
- human suicide kinetic data of limited use for validation
 U.S. Department of Energy
 Pacific Northwest National Laboratory

Potential Impacts of PBPK and Mechanism Studies on Risk Assessment (e.g. RfC/RfD)

RfC =
$$\frac{\text{HEC}}{\text{UF}_{\text{H}} \times \text{UF}_{\text{A}} \times \text{UF}_{\text{S}} \times \text{UF}_{\text{L}} \times \text{UF}_{\text{D}} \times \text{MF}}$$

HEC = Animal NOAEL x DAF

- Modify HEC
 - Replace default dose-duration adjustment factor (DAF)
 - DAF not generally used in developmental toxicity
 - calculate Human NOAEL based upon internal dose
- Modify uncertainty factors
 - e.g. animal to human (UF_A), intra-human (UF_H)

Battelle

Conclusions to Date

- Variety of rat kinetic data following several routes of administration and dose levels well-simulated
 - · No impact of pregnancy on kinetics of EG and GA
 - Higher internal dose of GA in male Wistar rats than male and female SD or F344 rats
- Non-linear clearance of GA in urine
 - NOT plasma protein binding-dependent
 - described by saturable reabsorption in kidney tubules
- Non-linear maternal blood GA kinetics well-described
 - consistent with developmental toxicity

Battelle

U.S. Department of Energy Pacific Northwest National Laboratory

Extra Slides

Battelle

Blood:Air Partition Coefficients

	EG	EGME ^a	EGBE ^a	MeOH ^b	EtOH ^c
Rat blood:air	17,902			1349	2,140
Human blood:air	17,543	32,836	7,965		1,265
Saline:air	5,323	35,869	7,051		

^aJohanson & Dynesius (1988)

- Respiratory uptake will be limited by ventilation rate
- Minimal EG will be exhaled unchanged
- Species/sex differences in blood:air should not be as pronounced as with halogenated solvents

Battelle

U.S. Department of Energy Pacific Northwest National Laboratory

Tissue: Blood Partition Coefficients

	EG	EGME ^a	EGBE ^b	MeOH ^c	EtOH ^d
Liver:blood	0.96	1.02	1.47	1.6	0.81
Kidney:blood	1.22		1.84	1.3	
Fat:blood	0.64	0.05	2.03	1.1	0.11
Muscle:blood	0.57	0.93	0.65		0.80

^aClarke et al. (1993)

Battelle

^bHorton et al. (1992)

^cPastino et al. (1997)

^bCorley et al. (1994)

^cHorton et al. (1992)

dPastino et al. (1997)

Acid Metabolite Tissue:Blood Partition Coefficients

	GA	MAA ^a	BAAb
Liver:blood	0.97	1.26	0.80
Kidney:blood	1.40		1.19
Fat:blood	1.09	0.32	0.45
Muscle:blood	0.70	0.50	0.53

^aClarke et al. (1993)

Battelle

U.S. Department of Energy Pacific Northwest National Laboratory

Albino Rat - IV Injection - EG

139 mg ¹⁴C-EG/kg (McChesney et al., 1971)

EG in tissues 1 hr after dosing

	Observed	Simulated	Ratio
Sample	EG (mg)	EG (mg)	(Sim/Obs)
Blood	1.77	1.62	0.91
Lungs	0.28	0.31	1.14
Liver	2.66	0.67	0.25
Kidney	0.18	0.22	1.19

Battelle

^bFarris (1998)

